A Comparison of Malware Detection Techniques Based on Hidden Markov Model
نویسندگان
چکیده
Malware is a software which is designed with an intent to damage a network or computer resources. Today, the emergence of malware is on boom letting the researchers develop novel techniques to protect computers and networks. The three major techniques used for malware detection are heuristic, signature-based, and behavior based. Among these, the most prevalent is the heuristic based malware detection. Hidden Markov Model is the most efficient technique for malware detection. In this paper, we present the Hidden Markov Model as a cutting edge malware detection tool and a comprehensive review of different studies that employ HMM as a detection tool.
منابع مشابه
Intrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملAbnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملA comparison of feature extraction techniques for malware analysis
The manifold growth of malware in recent years has resulted in extensive research being conducted in the domain of malware analysis and detection, and theories from a wide variety of scientific knowledge domains have been applied to solve this problem. The algorithms from the machine learning paradigm have been particularly explored, and many feature extraction methods have been proposed in the...
متن کامل